# David H Bailey

David Harold Bailey (born 1948) is a mathematician and computer scientist. He received his B.S. in mathematics from Brigham Young University in 1972 and his Ph.D. in mathematics from Stanford University in 1976.[1] He worked for 14 years as a computer scientist at NASA Ames Research Center, but since 1998 has been at the Lawrence Berkeley National Laboratory. He is now officially retired, but continues as an active researcher. He is also a Research Associate at the University of California, Davis, Department of Computer Science.

Bailey is perhaps best known as a co-author (with Peter Borwein and Simon Plouffe) of a 1997 paper that presented a new formula for π (pi). This Bailey–Borwein–Plouffe formula permits one to calculate binary or hexadecimal digits of pi beginning at an arbitrary position, by means of a simple algorithm. The formula was discovered by Simon Plouffe using a computer program written by Bailey. More recently (2001 and 2002), Bailey and Richard Crandall showed that the existence of this and similar formulas has implications for the long-standing question of "normality" – whether and why the digits of certain mathematical constants (including pi) appear "random" in a particular sense.

Bailey is a long-time collaborator with Jonathan Borwein (Peter's brother). They are co-authors of five books and over 80 technical papers on experimental mathematics.

Bailey also does research in numerical analysis and parallel computing. He has published studies on the fast Fourier transform, high-precision arithmetic, and the PSLQ algorithm (used for integer relation detection). He is a co-author of the NAS Benchmarks, which are used to assess and analyze the performance of parallel scientific computers. He has also published articles in the area of mathematical finance, including a 2014 paper "Pseudo-mathematics and financial charlatanism," which emphasizes the dangers of statistical overfitting and other abuses of mathematics in the financial field.

**About Berkeley Lab**

In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the National Academy of Sciences (NAS), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California (UC) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the UC Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a UC Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.